3p^2-18p=3

Simple and best practice solution for 3p^2-18p=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3p^2-18p=3 equation:



3p^2-18p=3
We move all terms to the left:
3p^2-18p-(3)=0
a = 3; b = -18; c = -3;
Δ = b2-4ac
Δ = -182-4·3·(-3)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{10}}{2*3}=\frac{18-6\sqrt{10}}{6} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{10}}{2*3}=\frac{18+6\sqrt{10}}{6} $

See similar equations:

| 8+70=w | | 5/9k=10/18 | | x÷7=64 | | 8x-43+2x=360 | | +9=11m | | 22=7y−6 | | 4m+5=m+17 | | 5f+17=67 | | 8(p+1)=56 | | t/6+13=17 | | 5(2x−1)+8=10(5x−2) | | 2-1=z | | a-16=9 | | n/10+10=15 | | 25x-7=4 | | 8(p+1)=48 | | ƒ(n)=1.25n+6.25 | | 12-2/5r=2r+1 | | 9q=117 | | –8n+9n=n | | 2a+6=1  | | 10(s-88)=40 | | 0=16t-30-4/t | | x+3x–7=2(2x+4)–1 | | 7x+16=-30 | | 7x+8=3x4 | | 2x/3-13=x-2 | | 73+4=n | | n/3.3=3 | | 7x-40=4x-10 | | 78+x=400 | | –6q=4−10q |

Equations solver categories